The Moon and Venus will share the same right ascension, with the Moon passing 2°15' to the south of Venus. The Moon will be 3 days old.
The Moon and Saturn will make a close approach, passing within a mere 16.3 arcminutes of each other. From some parts of the world, the Moon will pass in front of Saturn, creating a lunar occultation. The Moon will be 7 days old.
The Moon and Jupiter will share the same right ascension, with the Moon passing 5°28' to the north of Jupiter. The Moon will be 13 days old. Look East about 19.40 GMT
Shortest Day in the North
Since the Northern Hemisphere is tilted away from the Sun in December, it receives less sunlight during the course of a day. At the solstice, the North Pole's tilt away from the Sun is greatest, so this event marks the shortest day of the year north of the equator.
The constellation Cassiopeia contains a wealth of deep-sky objects that can be seen through a telescope. Cassiopeia is a great target for observers because it is a circumpolar constellation, meaning it can always been seen in the night sky. Its W shape can be seen to do a complete rotation around the North Celestial Pole, approximately marked by Polaris, the North Star. The constellation is distinctive and almost as easily recognisable as the constellation Orion.
It represents the Seated Queen and the name of star Schedar means ‘breast’, a reference to its position in the heart of the Queen. Cassiopeia is a great target to observe with the naked eye as it's so prominent, even from a suburban location. But get out your telescope and explore the constellation and you'll find a wealth of deep-sky objects.
One of the most well known DSO's is the cluster NGC 7789, also called the White Rose Cluster or more commonly Caroline’s Rose, after discoverer Caroline Herschel. The Rose is one of the best-known deep-sky objects in Cassiopeia. It’s located 2.9° southwest of Caph (Beta (β) Cassiopeiae), one of the points forming a right-angled triangle together with Schedar (Alpha (α) Cassiopeiae), Caph being at the right angle. It has an integrated magnitude of +6.7 and appears around 20 arcminutes across through a 150mm scope with over 50 members resolved.
The ‘Rose’ gets its name from curving lines of stars which give the impression of petals, clustered around the flower’s centre
Credit: BBC Sky At Night Magazine
This month the constellations Lyra and Cygnus are seen almost overhead as darkness falls with their bright stars Vega, in Lyra, and Deneb, in Cygnus, making up the "summer triangle" of bright stars with Altair in the constellation Aquila below. (see sky chart above)
Lyra
Lyra is dominated by its brightest star Vega, the fifth brightest star in the sky. It is a blue-white star having a magnitude of 0.03, and lies 26 light years away. It weighs three times more than the Sun and is about 50 times brighter. It is thus burning up its nuclear fuel at a greater rate than the Sun and so will shine for a correspondingly shorter time. Vega is much younger than the Sun, perhaps only a few hundred million years old, and is surrounded by a cold,dark disc of dust in which an embryonic solar system is being formed!
There is a lovely double star called Epsilon Lyrae up and to the left of Vega. A pair of binoculars will show them up easily - you might even see them both with your unaided eye. In fact a telescope, provided the atmosphere is calm, shows that each of the two stars that you can see is a double star as well so it is called the double double!
Epsilon Lyra - The Double Double
Between Beta and Gamma Lyra lies a beautiful object called the Ring Nebula. It is the 57th object in the Messier Catalogue and so is also called M57. Such objects are called planetary nebulae as in a telescope they show a disc, rather like a planet. But in fact they are the remnants of stars, similar to our Sun, that have come to the end of their life and have blown off a shell of dust and gas around them. The Ring Nebula looks like a greenish smoke ring in a small telescope, but is not as impressive as it is shown in photographs in which you can also see the faint central "white dwarf" star which is the core of the original star which has collapsed down to about the size of the Earth. Still very hot this shines with a blue-white colour, but is cooling down and will eventually become dark and invisible - a "black dwarf"!
M56 is an 8th magnitude Globular Cluster visible in binoculars roughly half way between Albireo (the head of the Swan) and Gamma Lyrae. It is 33,000 light years away and has a diameter of about 60 light years. It was first seen by Charles Messier in 1779 and became the 56th entry into his catalogue.
Cygnus
Cygnus, the Swan, is sometimes called the "Northern Cross" as it has a distinctive cross shape, but we normally think of it as a flying Swan. Deneb,the arabic word for "tail", is a 1.3 magnitude star which marks the tail of the swan. It is nearly 2000 light years away and appears so bright only because it gives out around 80,000 times as much light as our Sun. In fact if Deneb where as close as the brightest star in the northern sky, Sirius, it would appear as brilliant as the half moon and the sky would never be really dark when it was above the horizon!
The star, Albireo, which marks the head of the Swan is much fainter, but a beautiful sight in a small telescope. This shows that Albireo is made of two stars, amber and blue-green, which provide a wonderful colour contrast. With magnitudes 3.1 and 5.1 they are regarded as the most beautiful double star that can be seen in the sky.
Cygnus lies along the line of the Milky Way, the disk of our own Galaxy, and provides a wealth of stars and clusters to observe. Just to the left of the line joining Deneb and Sadr, the star at the centre of the outstretched wings, you may, under very clear dark skys, see a region which is darker than the surroundings. This is called the Cygnus Rift and is caused by the obscuration of light from distant stars by a lane of dust in our local spiral arm. the dust comes from elements such as carbon which have been built up in stars and ejected into space in explosions that give rise to objects such as the planetary nebula M57 described above.
There is a beautiful region of nebulosity up and to the left of Deneb which is visible with binoculars in a very dark and clear sky. Photographs show an outline that looks like North America - hence its name the North America Nebula. Just to its right is a less bright region that looks like a Pelican, with a long beak and dark eye, so not surprisingly this is called the Pelican Nebula.
Brocchi's Cluster An easy object to spot with binoculars in Cygnus is "Brocchi's Cluster", often called "The Coathanger",although it appears upside down in the sky! Follow down the neck of the swan to the star Albireo, then sweep down and to its lower left. You should easily spot it against the dark dust lane behind.
The stars of the Plough, shown linked by the thicker lines in the chart, form one of the most recognised star patterns in the sky. Also called the Big Dipper, after the soup ladles used by farmer's wives in America to serve soup to the farm workers at lunchtime, it forms part of the Great Bear constellation - not quite so easy to make out! The stars Merak and Dubhe form the pointers which will lead you to the Pole Star, and hence find North. The stars Alcor and Mizar form a naked eye double which repays observation in a small telescope as Mizar is then shown to be an easily resolved double star. A fainter reddish star forms a triangle with Alcor and Mizar.
Ursa Major contains many interesting "deep sky" objects. The brightest, listed in Messier's Catalogue, are shown on the chart, but there are many fainter galaxies in the region too. In the upper right of the constellation are a pair of interacting galaxies M81 and M82 shown in the image below. M82 is undergoing a major burst of star formation and hence called a "starburst galaxy". They can be seen together using a low power eyepiece on a small telescope.
As an evening star, Mercury appears in the western sky and sets about an hour after the sun does. As a morning star, it appears in the eastern sky, rising about an hour before the sun. There must be a clear, unobstructed horizon on these occasions.
This will be another "off" year for Mars, as for much of 2024 it will appear relatively dim while dawdling in the morning sky. Mars will actually be invisible for the first 10 days of the new year, too deeply immersed in the bright dawn twilight to be seen.
Always brilliant, and shining with a steady, silvery light, you can catch Venus during mornings in the eastern sky at dawn from Jan. 1 to April 8; evenings in the western sky at dusk from July 30 to Dec. 31
Jupiter will be quite brilliant with a silver-white luster in 2024. It starts the year in the constellation Aries the Ram, then crosses over into Taurus the Bull on April 28 where it will remain for the balance of the year.
During evenings from Jan. 1 to April 26, it'll shine brightly, as well as during mornings from June 8 to Dec. 6. Evening viewing will be optimal again from Dec. 7 to December 31.
Saturn shines like a yellowish-white "star" of moderate brightness. The famous rings, however, are only visible in a telescope.
The rings were at their maximum tilt toward Earth in Oct. 2017, but are now rapidly closing to our line of sight. They will turn edge-on to the Earth during the spring of 2025. The process will begin in 2024 within the boundaries of the constellation Aquarius, the Water Carrier, and the planet will remain there for the rest of the year.
You can catch Saturn during evenings from Jan. 1 to Feb. 11, mornings from March 17 to Sept. 7, then evenings again from Sept. 8 to Dec. 31. Saturn's brightest in 2024 will fall between Aug. 25 to Oct. 1. Saturn will be in opposition to the sun on Sept. 8. Saturn and Venus will appear dramatically close to each other (with Saturn just 0.2-degree S) on the morning of March 21 and will be 0.4-degree S of Mars on April 10.
No Code Website Builder